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I.Summary

A fundamental program of research on the mechanical properties of
microelectronic thin film materials is underway at Stanford University. The work
is being supported under AFOSR Grant No. 86-0051. In this Interim Scientific
Report, some of the progress made during the second year of the program is
reviewed. We have made rapid progress since starting this research program
just two years ago. Much of our early work involved the development of new
experimental techniques for measuring mechanical properties of thin films.
That work led to several publications and to an equal number of invited oral
presentations, both of which are listed at the end of this report. Now much of
our work involves the use of these techniques to study mechanical properties of

* thin film materials of interest in microelectronics.

The primary motivation of this work is to understand the mechanical
properties of microelectronic thin film materials. Although these materials are
not structural materials as such, they are, nevertheless, expected to withstand
very high stresses, both during manufacturing and in service. As a

-. 4 consequence, the mechanical properties of these materials are almost as
important as their electronic properties for successful device applications.
Because these materials often exist only as thin films bonded to substrates, it is
necessary to study their mechanical properties in that state. For this reason
most of our work to date has involved the development and use of submicron
indentation and wafer curvature techniques for studying the mechanical

* properties of thin films on substrates.

The mechanical behavior or response of microelectronic thin films is
caused by the very large stresses that can exist in these materials. For this
reason it is important to have a clear understanding of how these stresses
originate. Thermal and epitaxial stresses are quite well understood and in
cases where these processes dominate it is relatively easy to predict the
resulting stresses. Often, however, the stresses that act in thin film structures
are the result of non-equilibrium growth processes. During the past year we

~1 have made a study of the physical processes by which "intrinsic" (or growth)

1
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stresses are generated in thin film structures. That work will appear as a special
review paper (to be published by CRC) and is not summarized here.

The central equation in the study of stresses and mechanical properties of
thin films on substrates involves the relationship between the stress in the film
and the corresponding curvature of the substrate. The equation that is

commonly used to interpret experiments is based on several well knownI approximations that are considered to hold for the typical case of a thin film on a
relatively thick substrate. Other approximations that are implicit in the use of the
standard formula have not been studied in detail. During the past year we have
studied the effects of gravity and support geometry on the film stress-curvature
relationship. We find that the way the substrate is supported can have
significant effects on the curvature because the pull of gravity causes the
substrate to bend in a measurable way. This analysis shows why it is important
to have a reproducible way to support the substrate when the film stress is
being measured. We have also studied the effects of substrate shape, elastic
anisotropy in the substrate and thermal gradients in the substrate on the stress-
curvature relationship. These effects appear to be much less significant than
those associated with gravity

An experiment has been designed to study the basic mechanisms of crack
formation in interconnect metals. We have proposed to use the wafer curvature
apparatus to monitor the cracking of aluminum lines under a rigid passivation.
A pattern or mask has been made for this purpose and test samples are now
being made. We hope to be able to study the kinetics of cracking as a function
of stress and temperature using this technique. The motivation for this work and
progress made during the past year are described in the report.

One of the basic mechanisms of deformation of thin films involves the
interaction of dislocations with interfaces. In the first year of this program we
studied the long range interactions of screw dislocations with the many
interfaces that are present in thin film structures. During the past year we have
started to extend this analysis to the case of short range interactions, where a

4 given dislocation comes into intimate contact with an interface. Progress on this

theoretical problem is described in the report.
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ii. Research Report

A. Some Issues Concerning Curvature of a Plate Relevant To Thin-
Film Stress Analysis

(F. von Preissig)

1. Introduction

Thin solid films of many kinds, deposited or grown onto sub-
strates, are used in today's microelectronic devices. Mechanical
strn~sses in these films arise from various causes, including thermal
o~ptnsion differences between film and substrate materials, the
chemical state of the as-deposited material, and chemical or
structural changes occurring in the films upon processing after de-
position. These stresses can lead to cracking or delamination of the
films and can induce dislocation formation in the substrate. The
study of film stress is also of interest as a probe of the physico-
chemical nature of the film material.

In order to experimentally determine mechanical stresses in thin
films on substrates, it is common practice to use the formula

C= 16(1- vOad

where

* C. curvature of substrate; R - radius of curvature
E.- Young's modulus of substrate
v - Poisson's ratio of substrate
d.- film thickness
t - substrate thickness
ar - In-plane film stress.

Eqn. (1) has been derived [1, 2, 3a] for the following case: The sub-
strate is a plate that is thin, elastically isotropic, and (when bare)
flat. The single film has uniform thickness, much less than t, and a
uniform, isotropic plane stress. The temperature is uniform. The
maximum displacement due to bending is less than about V/2. The
composite plate (substrate plus film) is mechanically free.

3



Hence, by measuring the radius of curvature of a film-substrate
composite (e.g., by an optical lever technique), film stress can, in
principle, be calculated.

In practice, however, conditions arise that completely invalidate
eqn. (1), require it to be modified somewhat, or simply call its ac-
curacy into question, pending further investigation. For exampie, if
the substrate is initially not quite flat, or if it is subjected to
small, reproducible deformations other than that caused by the film
stress, eqn. (1) may apply only after the non-film-stress effects are
subtracted out, e.g., by making a reference measurement of the bare-
substrate surface profile [4]. Also, thick-film and multiple-film
cases are covered by extensions to eqn. (1) that have already been
derived [5, 6]. In this report, I examine (mostly theoretically) some
of the effects of gravity, substrate shape, substrate crystallinity,

and -tem?e -k.e. on

substrate curvature. lyoc i -s

2. Geometric Conventions and Basic Formulas

Geometric conventions for the composite plate as defined in Fig.
1 are adopted. Radial symmetry about the z-axis is assumed.

t-----z twr) r

r~a -(0

Figure 1. Geometry (exaggerated) of a bent, circular plate
with film. a - radius, r - radial position, w - displacement, y
a level, and o - slope.

The slope is given by

dwdr (2)

For small deflections, the local curvature is

4



C~)=dO d w
j d r2  (3)

(shown positive in Fig. 1).
If, in addition, C is constant over r, then

O(r) = JC(r)dr = Cr
0 (4)

and

WU= JaC. 5

The effect of the film on the composite-plate thickness and
rigidity is negligible since d << t will always be assumed. The film
stress is positive when tensile. Bending moments per unit length, M,
are positive if they tend to cause positive curvature in their plane of
action.

The substrate, unless otherwise noted, is considered to be a thin
plate subjected to small deformations, as defined below (from [7a]):

In the theory of thin plates, it is customary to make the fol-
lowing assumptions: 1) The plate is initially flat. 2) The ma-
terial is elastic, homogeneous, and isotropic. 3) Thickness is
small compared to area dimensions. 4) Slope of the deflection
surface is small compared to unity. 5) Deformation is such that
straight lines initially normal to the middle surface remain
straight and normal to that surface. (Vertical shear strains are
neglected.) 6) Strains in the middle surface, arising from the
deflection, are neglected compared to strains due to bending.
7) Deflection of the plate occurs by virtue of displacement of
points in the mid-surface normal to its initial plane. 8) Direct
stress normal to the middle surface is neglected. 9) Near edges
and boundaries of loaded areas, stress resultants rather than
detailed stress patterns are considered.

The flexural rigidity of the plate is defined as

12(1- 0) (6)

A The biaxial modulus is

0.1 3- V (7)

5
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3. Effect of Gravity

!n real situations, the sample is not free, but is typically sup-
ported from below and subjected to the downward pull of gravity.
The manner in which this uniform force affects the curvature de-
pends on the position of the support points. If the support points are
reproducible, as they are in a tripod arrangement of pins, then the
effect of gravity on a given wafer (sample) is constant and can be
subtracted out by making a bare-wafer measurement. If, however,
the wafer sits on a flat surface (sometimes a tripod support is im-
practical), the wafer's support points will depend on the wafer's
warp. In this case, it is desirable to have an estimate of the maxi-
mum change in curvature associated with a change in support points.

Take as two extremes a round plate 1) simply supported from
below all around its perimeter and 2) supported only at its center.
With q defined as the uniform downward force per area, the dis-
placement of the plate for the edge-supported case is given by [7b]

SqaT ( 1  XS (+ V )
Wod, =64 H a2 1+ v a 2  (8)

The displacement for the center-supported case can be calculated by
superimposing the solutions to two different loading situations, as
shown in Figure 2.

q p= It dq

/ / minus p2a

q

equuasls

Figure 2. Demonstration of the way in which the center-
supported elastic plate-bending case is derived from the
superposition of two other cases.

The result is

'a
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W ,. =

qa' 2e nL 3+Wee- 1"6H 2a-)+ 1+v 1 (9)

The difference between the edge and center cases is

A W = Wede- Wcwo =

lq9 r 2r + 3+ v "1  .

The corresponding local shape and curvature, after substituting q =
Dt, where D is substrate weight density, are

d(Aw)dr -

2Dta1 r r1 _ r~~l=
4H 1+v - avy

3' 3Odr1 (1- v)ln(aL)],

d (A w), &C(r) = d -
dr2

Dt v +,I ( r)]
4. -4H LI+ v+ a

"-' It V +  ( + V) .a~
P3t (12)

(The mathematical singularity at r= 0 makes (12) physically un-

realistic very near the center.)

* The average of A C from r - 0 to r- ron the wafer is

7
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- 1 *,t

AC(r) = 7 JAC(r)dr =

1BO(r) -AO( r -+ 0)] =

J L (13a)

For the whole radius (or diameter, due to symmetry), this average
reduces to

C( (e).(13b)

Typically, however, what curvature measurement techniques (such
as ours) actually record is an average curvature that is calculated as
the slope of a linear regression best-fit line for a series of meas-
ured slope vs. diametral-position data points. If the curvature is not
constant (and there are more than two data points), then the meas-
ured curvature, CM, will not in general equal the true average of C
over r, C(r). The theoretical value of CMcan be derived from C(r).
Taking C(r) to be the gravity effect (AC(r)) given by eqn. (12) and
using ten slope measurements equally spaced on a wafer diameter
for CM, one can calculate that

C!AC(a) = 1237 +0. 237v, (14)

which equals 1.27 for a quartz substrate (v- .16) and has a maximum
possible value of 1.36 (when v . .5). The ratio Cm/AC(r) is closer to

* 1 for measurements spanning less than the full diameter (i.e. r < a).
We will subsequently to refer to the gravity effect in terms of
AC(a), keeping in mind that Cm is comparable to AC(a).

In determining the film stress, we may view the maximum grav-
ity effect as a component of the experimental uncertainty. With Co
defined as the curvature due to film stress alone, as given by eqn.
(1), then

S. AC(a) Da2
C, 2ad (15)

8



Note that this relative variation is independent of substrate moduli
and thickness, but is a strong function of wafer size. To reduce the
relative gravity effect, one can simply use smaller substrates.

Take the example of a silicon (D = 2.33 g/cm 3  x 980.7
dyne/gram-force) substrate (say (111)-oriented, which is elasti-
cally isotropic in-plane) with a typical film having a - 200 MPa =

2x1 09 dyne/cm2 and d - .5g - 5010-5 cm. If the substrate is a 100-
mm wafer (a - 5 cm), then eqn. (15) gives a relative uncertainty of
29%. But a - 1 cm yields a very tolerable uncertainty of 1.1%. For a
substrate of quartz (D = 2.2 g/cm3 , P = 8.6X1011 dyne/cm2 , v - .16
[8]), the relative gravity effect is slightly less than it is for silicon,
although the absolute effect is larger.

Experimental confirmation of the gravity effect theory is shown in
Figure 3. In this case, what is plotted is -dw/dx vs. x, where x is

*. the diametral position, with the center of the wafer being at x - 0,
and -dw/dx is the slope of the wafer surface. The appropriate theo-
retical equation, a modification of eqn. (11), is

d(Aw) (X) = 3 Ddi - (1+ v)ln I LI ].
dx ,t (16)

Experimentally, slope vs. position data for a round quartz substrate
were obtained using a laser reflection technique. The slopes that
were measured while the substrate was supported at its center by a
2-mm Si chip were subtracted (for each position) from the slopes
measured when the substrate was supported around its edge by a
foam ring. The resulting experimental values fit the theoretical
curve quite well.

It should- be noted, however, that plate deflection is very sensi-
tive to the boundary conditions, and that in this case, a uniform,
simple edge support was hard to achieve. This difficulty resulted in
some measurements varying as much as 30% from those shown. In

., fact, in an experiment in which the edge of the substrate was inten-
tionally supported at only two points, on the line of measurement,
the edge-minus-center measured curvature was 2.17x10-2 M-1, or
2.2 times what it was with the uniform edge support. Hence the

." "two extremes" of support for which the equations of this section
have been derived do not represent the absolute extremes of gravi-
tational bending of an isotropic, round substrate (to say nothing of a

9



crystalline or rectangular one). Nevertheless, our analysis explains
the general magnitude of the gravity effect and shows how this ef-
fect can be altered by using different substrate materials and sizes.
Such knowledge can be useful in the design of experiments and the
interpretation of their results.

.5

.4 Edge-Supported Minus Center-Supported . /

.3 quartz substrate
a - 50.5 mm

•2 t- 546 j/ 8.03x0 "3 M -1

""',' .1 / .. , 9.81x10.3 M-1
%'

% 0
0 0_

. measured
.2 - equation (16)

3 .......... linear regression

. 4 , ,. average curvature
(central 81 mm)

-. 5 a , , .. . . . . ,-60 -40 -20 0 20 40 50

Position (mm)

Figure 3. Experimental confirmation of gravity effect on
quartz substrate.

"-, 4. Effect of ShapeS

Most researchers doing experiments that employ eqn. (1) nowa-
days use round substrates, usually silicon wafers. But the substrate

does not need to be round for (1) to hold, as the simple derivation
*, presented here will demonstrate.

Timoshenko [9] has shown that a rectangular plate with a uni-
form bending moment per unit length M applied at its edges will de-
form into a spherical cap having a curvature

1.,0

10
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_ M
HO H+ v) (17)

and an internal bending moment isotropically and uniformly equal to
M. Hence, a plate of any shape will deform in accordance with eqn.

*44 (17) if M is applied to its edges, since the same boundary conditions
are applied to any internal section of the rectangular plate.

In a "strength of materials" analysis of the effect that a thin,
stressed film has on a substrate, a force and bending moment acting
on the perimeter of the substrate are found that make the resultant
force and moment at the edge of the film plus substrate equal zero,
as illustrated in Fig. 4. The bending moment per unit length is ap-
proximately

M=I 2 tad. (18)

(The net edge force has a negligible effect on substrate curvature.)
Substitution of (18) into (17) yields (1). Thus, under conditions in
which eqn. (1) holds for a round substrate, it also holds for a sub-
strate plate of any other shape.

la 
ad

df 4 F-o F-- ad

-~ >ad

.0 -- -- -- - F-- ad

M- V2a d

*Figure 4. Model of how a thin film exerts the approximate
equivalent of a bending moment per unit length M on the edge of
a substrate.

However, the substrate must not be narrower than about 4t, or it

w% will cease to bend like a plate [3b]. If the width is about equal to t
-. or smaller, beam theory applies and 0t 3112 replaces H (e.g., in (18)).

4. 11



I
5. Effect of Crystallinity

At the outset, I stated that eqn. (1) was derived based on the as-
sumption that the substrate is elastically isotropic. Yet single-
crystal silicon is often employed as the substrate material. In this
section, I explain why the substrate crystallinity does not neces-
sarily invalidate (1). My approach is to verify that (1) is entirely
consistent with elastic theory for a cubic crystal such as silicon.

When a substrate plate is bent to a uniform curvature (as re-
quired by (1)), it has an in-plane strain distribution given by

8OW(y) = -Cy, (19)

where y is the distance measured from the plate's middle surface
toward its upper (or film-covered) surface. If this plate is made of
an isotropic material, the in-plane stress is related to the in-plane
strain by

a ., = 090,. (20)

where aplaneand epianeare biaxial (planar-isotropic). Combining (19)
and (20), we obtain

or, = -C!y, (21)

and then

C 3
M =-fca(y)ydy- 12 "

1 (22)

Substituting M induced by the film, given by eqn. (18), yields equa-
tion (1).

If the substrate is not made of an isotropic material, the pre-
ceding analysis proves that (1) is equally valid as long as (20), a
constitutive equation, holds. The stress state satisfies the equilib-
rium equations of continuum mechanics, the strain state satisfies
continuity requirements, and the physical conditions satisfy all
boundary requirements, just as they do when the material is
isotropic.

12
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N It is known (10] that EI(1-v ) (f0) is invariant for directions
within (100) and {111) planes of cubic crystals, and hence isotropic
in-plane in (100)- and (111)-oriented silicon wafers. For {111}
planes, E and v are individually invariant, and as a result, these
planes are truly elastically isotropic. But for (100) planes, E and v
are not invariant. Hence, the question is whether a planar-isotropic
f, is sufficient to make eqn. (20) true.

Hooke's Law for elastic anisotropic media, in reduced notation, is

5% e, = eo~ j ,(23a)

Where i, I = 1, 2, ... 6 represent "tensile* or "shear* together with
directionality, and the Si# are the standard elastic compliances of
the crystal. If the orthogonal coordinate axes are not specified as
coincident with the <100> crystal directions, the equation is
rewritten as

,,S,

Ile, (23b)

Although for a cubic crystal, many of the S i are zero, this is not the
case, in general, for the S "i.

Now take the x and y axes of the coordinate system to be at ar-
bitrary (but perpendicular) positions within the plane of the crystal
substrate. In the biaxial stress state proposed above, there are two
principal tensile stress components, a' = 2, all other a'' being
zero. For this case, (23b) reduces to

,(s0,+ (24)

for i=1. Here e'I is the tensile strain for an arbitrary direction
within the substrate plane. Note that

12 1 (2= 1- V

SI +S,2 =S1 + S _K_1 E') 1
1 E, 12 (25)

0O.
and hence

13
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." = ,1,2e ,  (26)

Thus, if " i.e., 13 for arbitrary in-plane directions, is isotropic, as
it is for (100) and (111) silicon, it relates a biaxial stress state to
a biaxial strain state without contradiction. Equation (20) does
hold, so eqn. (1) is valid for (100) and (111) silicon substrates.

It should be mentioned that eqns. (24) and (26) do not hold in sit-
uations where the stress and strain states are not biaxial. Non-
spherical bending due to gravity is one such case. Thus, a (100) sili-
con wafer will not sag as if it were isotropic; its slope distribution
is not expected to be radially symmetric. However, since the grav-
ity-effect slope and average curvature equations, (11) and (12), de-
pend strongly on .P, compared to an additional dependence on v,

A asymmetry should be slight and use of an average value of v should
suffice for most purposes.

6. Effect of Thermal Gradient

In some experiments, a film on a substrate is heated while the
curvature is being measured in order to determine the effect of tem-
perature changes and annealing on film stress. Thermal gradients
may exist in the substrate, and their effect on the curvature must be
considered.

-, We will examine the case where the substrate has a temperature
that varies linearly from T at the top surface to T + AT at the bot-
tom surface. This vertical thermal gradient contributes directly to
curvature, since the thermal strain varies linearly with level. The

* thermally-induced curvature, which is uniform over r, is [3c]

, iOw C=, az AT
.c t , (27)

S. where a is the thermal expansion coefficient of the substrate. This
equation can easily be derived using eqn. (19).

In the following examples, we will use the material parameters
SI, given in Table 1 (11, 12].

14
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Table 1

Thermal Exp. Coef.t Thermal Conductivityt

a, 25° C a, 7000 C k, 3000 C k, 7000 C

Silicon 2.6 4.4 136 32

Fused Quartz .50 .39 1.7 2.7

t(10"6 oC-1)

*(W/moC)

Suppose we wish to know what AT would cause a Ctherm of lx1 0-3
m -1, which is a small but significant curvature change, in a .5 mm-
thick substrate. From eqn. (27), AT- Ct/a =

for silicon: .19 COat 25 0 C, .32 C0 at 7000 C;

for quartz: 1.0 COat 250 C , .78 COat 7000 C.

Let us calculate how much power must pass vertically through a
round 100-mm wafer to cause the above effects.

Heat flow rate = MAT .
kAX , (28)

A - x(.05 M)2, Ax - t- 5x10-4 m. The required power is

for silicon: 406 watts at 25 CC, 56 watts at 700 IC;

for quartz: 27 watts at 25 °C, 33 watts at 700 OC.

Hence, for silicon substrates at high temperatures and quartz sub-
strates at all temperatures, vertical thermal gradients within the
substrate will have a significant effect on curvature unless the fur-
nace used has a low vertical heat flux within the compartment
holding the substrate.

Horizontal thermal gradients may also exist in the substrate.
They induce thermal stresses that can alter the curvature of an

15
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already-curved substrate, but the analysis of this effect will not be
attempted here.

7. Summary

We have seen that the standard equation relating substrate cur-
vature to film stress is theoretically accurate under certain ex-
perimental conditions and not accurate under others. Gravitational
forces can cause a large error, but one can circumvent this problem
by using small substrates or reproducible supports. The shape of the
substrate, as long as it is a thin plate, does not affect the curva-
ture-stress relation; neither does the crystallinity of (111)- or
(100)-oriented cubic-material substrates. Thermal gradients can
significantly alter substrate curvature. These pieces of information
should be valuable to researchers measuring stresses in thin films
on substrates.
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B. Study of Metal Cracking in Interconnect Metais

(Anne 1. Sauter)

1. Introduction

Aluminum metallization is commonly used as an interconnection material
in integrated circuits. The continued functioning of such devices depends
sensitively on the interconnect lines remaining continuous. Unfortunately, these
lines are susceptible to cracking or void development as a result of several
different types of conditions encountered in the fabrication and operation of
integrated circuits, and if the lines crack or form voids, the device can fail.
Causes of cracks or voids in lines can include e lectrom ig ration, chemical
reactions between the aluminum and an adjacent material, and high stresses

% developed in the lines as a result of the difference in thermal expansion
coefficients between Al and silicon or silicon dioxide. The former two of these
problems are fairly well understood and have been studied in a systematic way
[11-3]. The last problem mentioned, however, which is known as the metal crack
problem, although well known to engineers, is not understood in a fundamental
way. There is no consensus as to the basic mechanisms of crack formation and
growth due to thermal stresses.

The difficulty arises in this way. The deposition of Al is generally the
second to last step in the fabrication of a device, the last step being the
passivation layer depcsition. The passivation consists of an insulating material,
usually silicon dioxide or silicon nitride, and this material is normally deposited
at high temperatures (300-5000C). On cooling to room temperature, high
stresses can develop in the Al lines due to the difference in thermal expansion
coefficients, which is about 2.2 x 10-5 OK-1 between Al and Si. Since the line s
are bonded on all sides to other materials (Si and Si02), only a minimum of
plastic flow can occur, if any at all, to relieve the stresses. Thus other
mechanisms must come into play. It has been generally observed that cracks
can form in the lines, presumably as a result of the high thermal stresses; what
is not known is how these cracks initiate and grow. To discover how this
cracking occurs is the object of this study.
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2. Background

Some existing work by other authors provides a foundation for the present
work. For example, the stresses due to thermal expansion differences in Al thin
films on Si wafers have been studied via a wafer curvature method for various
film thicknesses [4,5]. Mechanical properties of Al thin films such as hardness
and yield strength have also been measured [6,7]. This information will be
useful in the present study. In addition, several authors ha,'e addressed
problems more closely related to the metal crack problem.

Jones used a finite element method to calculate stresses in Al lines on
cooling after passivation deposition at 4000C [8]. He studied one micron thick
AI-1%Si on oxidized Si passivated with 1.2 microns of PSG, in the form of lines
of widths 1-6 microns. He found triaxial stress conditions conducive to the
formation of creep voids. The smaller line widths resulted in higher stresses.
This is consistent with intuition, and also with the observation that smaller lines
have higher failure rates. The stresses he calculated in the line length direction
for the 2 micron wide line are about the same (300-400 MPa) as those
calculated previously by this author and reported in the progress report of
March 1987.

Owada et al observed stress induced "slit-like" voids at grain boundaries in
bamboo-type grain structures in passivated Al-Si patterned interconnections
during aging tests at 200 OC [9]. The stresses driving the void formation were
found to be a result of the presence of the passivation layer. They found that
they could inhibit the appearance of the voids by preventing a bamboo-like
grain stucture from forming, and concluded that a grain boundary migration
mechanism was responsible for their formation. However, this does not seem
to be a general solution to the metal crack problem, since their stress levels
were relatively low because their tests were done above room temperature.

Both of these papers relate to the "metal crack problem," since in both
cases voids in interconnections result from thermal stresses. The two authors
arrive at different mechanisms to explain the void formation, however, and this
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is typical of the confusion surrounding the problem. While is is quite possible
that bath of these mechanisms could operate in different regimes, it is not clear
what these regimes are. A fundamental study is needed to accurately identify
the mechanisms involved in interconnect crack formation, and the conditions
under which each mechanism operates. Ultimately, it is hoped that methods
will be developed to inhibit these mechanisms, so that crack formation can be
prevented.

*3. Metal Crack Problem Study

Test structures of Al-i %Si lines on oxidized Si passivated with sputtered
SiO2 are being fabricated (Figure 1). These will be subjected to heating and
cooling cycles in the wafer curvature apparatus, and stress information as a
function of time and temperature will be obtained. If a sample is held at a

9, temperature where a high tension stress exists in the lines, this stress will tend
to relax. Since plastic flow of the lines is inhibited by the surrounding material,
this relaxation will largely take the form of cracks in the lines. As the cracks form
and the stress relaxes, the curvature of the wafer changes. The rate of change
of the wafer curvature will yield stress relaxation data, from which can be
calculated the rate of cracking and finally an activation energy for crack

a formation. This in turn will permit us to identify the mechanism of crack
formation and growth. If there are different mechanisms that operate in different
stress/temperature regimes, this will be made evident by calculating stress
relaxation data for different temperatures.

Description of Samples

Single crystal double polished (100) Si wafers 4" in diameter and 500-550
microns thick were used. These were oxidized to form a 1000OA layer of SiO2.
AI-1%Si was sputter deposited to a thickness of 2 microns, patterned into lines
and passivated with sputtered quartz.

Double polished wafers were used so that a smooth surface can be
presented to the wafer curvature apparatus -- the side with the lines on it is
bumpy, so the wafers are turned over to be measured. The thicknesses of the
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Figure 1. A schematic representation of the configuration of the samples. The tines
0 are actually two microns wide and four microns apart. In (a), the lines are

intact and the stresses in them have resulted in a curvature of radius R1. In
(b), some of the lines have cracked, with the result that the stress has
relaxed and the radius of curvature has changed to R2.
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materials deposited were chosen to be representative of actual practice. Ai-

1 %Si was used for the same reason. Sputtered quartz was chosen as a

passivation material for several reasons. It is already to a large extent densified
as it is deposited, so densification and outgassing of the passivation will not
interfere with the stress measurements of the lines. In addition, sputtered quartz

deposition is a room temperature process, which means that the lines are
relatively stress free to begin with, and they can be stressed in a controlled
fashion through temperature cycling. Although large initial tensile stresses in

the lines require a high temperature deposition process, the sputtered quartz
v passivated samples will allow us to establish the stress/temperature

characteristics of the lines independent of passivation stress effects. Later high

temperature deposited passivations will be used to allow us to generate high
4,' tensile stresses in the lines and observe significant stress relaxation by

cracking.

The pattern etched into the Al layer is basically a series of parallel lines.
The lines are 2 microns wide, a typical dimension in practice. They are

separated center to center by 6 microns, leaving 4 microns of bare oxide
between each line. This should be sufficient to prevent significant interaction,
that is, the lines should act like well separated lines and not a continuous layer

of Al. The nature of the patterning machine is such that the whole wafer cannot
be uniformly covered with lines, but there must be some patches near the edges
that are either bare oxide or continuous Al. We chose to leave these covered
with Al in order that the lines adjoining the patches be better anchored.

Description of Experiments

Since the passivation is deposited in a room temperature process, the
samples should be relatively stress free at the outset, although there may be

some low level of stress due to the fact that the sample is heated slightly during
Al deposition. Significant cracking leading to stress relaxation will therefore
probably not be observed in these samples, however as a first step this simple

system can yield valuable information. It is also possible that some stress
relaxation can be measured even at these low levels of stress.

.2
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The first measurements to be done would establish the stress/temperature

dependence of the sarrles. Schematically, this might look like the analagous

curve for thin film Al, with the lines going into compression on heating and

tension on cooling. This information will assist in separating passivation stress

effects from stresses in the lines when samples with high temperature deposited
passivation layers are tested.

Samples will be fabricated identical to the samples described above but

with a passivation layer deposited at a high temperature. This will enable high
tensile stresses to be produced in the lines. Various stresses could then be

imposed on the lines by holding at various temperatures at which the stresses
are known through the first step. The amount the stress relaxes as a function of

time is a measure of the amount of cracking in the lines. Obviously, the cracking
is nonreversible, but hopefully there are enough lines on each sample that each

could be used several times. The amount of cracking that occurs and the

number of lines that crack depends on the initial stress level. If only a few

percent of the lines must crack to produce a measurable curvature change, then
many uncracked lines may remain after the experiment and the sample could

possibly be used again.

.. , 4. Summary

A basic study of the mechanisms of metal crack formation in Al
interconections is being undertaken. Test structures consisting of passivated Al

lines on oxidized Si are being fabricated. These will be tested in the wafer

curvature measurement machine to obtain stress relaxation data and ultimately

information about the mechanisms of crack formation and growth.
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C. The Numerical Analysis of the Interaction of a Screw Dislocation with a
Coherent Interface

(J. F. Turlo)

The interaction between dislocations and various obstacles dispersed

throughout a crystalline material play a major role in the determination of the

mechanical properties of the material. In a bulk material, the interaction of a

dislocation with the surface is insignificant. However, in a thin film, the surface,

or any interface, may become a prevalent obstacle to dislocation motion and,

therefore, affect the mechanical behavior. So, an estimate of the force, or shear
stress, required to pass a dislocation through an interface is important.

In 1953, Head examined the interaction of a screw dislocation with the

interface between two materials of different shear modulus. In his treatment, the

force of interaction becomes infinite at the interface. The common model of the

dislocation views the dislocation as the line separating sheared from unsheared

material with the line being a singularity yielding the infinite interaction stress. In

. 1969, Mura and Pacheco applied the Peierls model of a dislocation to the

problem to obtain a finite interaction stress. In the Peieris model, the dislocation

line, with Burgers' vector, b, is replaced by a continuous distribution of

dislocation segments whose sum through the material is b. The total interaction

stress is obtained by integrating the contribution from each infinitesimal

dislocation segment over the whole material.

An external shear stress must be applied to the material to balance the

force of the interface and prevent the dislocation from moving. The resulting

equilibrium equation on the slip plane is
S

.1 dl t 1 d 1
-t + +K TXi- t tdt+K ic~ adt + fsin 27ta ~sin 2 TcW

(1)
0.

where T is the displacement of the atomic planes due to the dislocation and the
applied shear stress, x is the spatial variable, a represents the applied shear
st,ess and, K is the relative shear modulus

S.
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G 2 +G1 (2)

The first integral represents the shear stress on the slip plane from the
dislocation alone and the next two integrals represent the shear stresses from
image forces through the interface. The next term is the externally applied shear
stress. The last term represents the resistance of the crystal to motion on the slip
plane which is periodic as the crystal lattice. The equation is difficult to solve
directly because of the singular integrand in the first integral as well as the

* nonlinearity of the sine terms.

If K = 0 then the material is homogeneous, it has no interface. No force is
required to hold the dislocation and the shape of the atomic planes is given by

'*=-arctan (x -c)()
(3

where c is arbitrarily chosen as the center of the dislocation. This is the Peierls
solution for the shape of a screw dislocation in an infinite material. As the infinite
material is traversed fr-om one end to the other, the shape function ranges from -

0.5 to 0.5 which is one unit of shear, the Burgers' vector.

Mura and Pacheco added a correction function to the homogeneous
solution to solve for the case including an interface. The even part of the
correction function was expanded in a Taylor's series to obtain a first order
solution, the odd part makes no contribution to first order. The infinite series
obtained is somewhat unwieldy and provides no means of estimating the error

of the solution, so some effort has been devoted to numerically obtaining a
* more complete solution.

The first attempt was to expand the displacement distribution as an
asymptotic series,

n (4)

Since K is always less than 1, the series will always converge if the TIn are well
* behaved.
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For n - 0. the homogeneous equation and solution are obtained. For n = 1,

the equation for the first order correction is given as,

+ dT I It d'P = I fl

x- t dt t+ fTT- 'dt + f xt , , ' dt + na, = n cos 2nP9
....- , (5)

A simple numerical quadrature formula was chosen and the results are shown
in Figure 1.
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Figure 1. The first order correction to the homogeneous
solution for the shape of a screw dislocation in the

4 presence of an interface. The parameter is the
number of points used to approximate the function
.iF.

As can be seen in the graph, 'j increases without bound at x = 0, as the
number of points goes up, which implies a singularity in the solution. In fact, if
the Peierls arctangent solution is substituted for To in equation (5), the integrals
yield a logarithmic singularity at x = 0. So, the asymptotic expansion is not well
behaved and, another approach must be developed.
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Following Mura and Pacheco, the shape function can be represented as a
first order solution plus a correction function,

P(x) = fo(x) + D(x) (6)
.(6)

%,. where 'P is the same as before and D is a lumped correction term. The
resulting equation for D is,

- dt f K (t) + ---2-(- t) t 2x-D
fX-tdt X jI+C-dt t l( )

1 (X C) s2  1 in K(x'j- c) + arctan c]si 'E - sin 2nro - x- -- I

'6* K( x - c) [- artan c1
.. .... + (< X1 - C)]2 h +(X + 7[ + x - r

.+ cd

(7)

which now includes both the sine and cosine functions. However, the
magnitude of D is expected to be much less than one for small values of C so,
the equation can be linearized by the approximations that sinp = p and cosp =
1. The results of the numerical solution are shown in Figure 2. The graph
exhibits the expected shape as well as an appropriate magnitude but, even this
small magnitude is at the limit of the approximations made. Assuming the
solution obtained at 89 points is close to the true solution, an approximate error
can be obtained as a function of l/N, the interval size, where N is the number of
points. The behavior of the error for the quadrature method used can be
predicted and is expected to behave as a power series in the interval size if the

method is converging to the correct solution. Figure 3 shows a fourth order
polynomial fit to the error showing that the quadrature method is converging
appropriately.
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Figure 2. The first order approximation to the correction
function, D. The parameter is the number of points
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Figure 4 shows the result of adding the correction to WPO and Figure 5

shows the derivative of the approximate solution in Figure 4. Since the singular

dislocation has been replaced by a continuous distribution of infinitesimal
dislocations, the derivative of the shape function, 'F, yields the magnitude of the

dislocation through space. The derivative plot shows that the interface has

forced the dislocation a small distance (approximately one fourth the Burgers'
vector) into the softer material as expected from the attraction repulsion criterion
established by Head.
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Figure 4. The shape distribution, WF, with the first order correction.
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Figure 5. The derivative of the shape distribution.

S.

The first order approximation of the stress required to hold the dislocation

at any distance from the interface can be obtained and is given in Figure 6.

Alpha is the shear stress normalized by the shear modulus. The maximum

,* value occurs at the interface and represents the stress required to pass the

.5.. dislocatiun through the interface or the theoretical strength of the interface. For
an interface with a vacuum, K = 1, the stress required to pass the interface is

approximate!y one fifth the shear modulus.
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Figure 6. The first order approximation of the stress required to hold the
dislocation in equilibrium.

The first order approximation is only accurate for very small K so, the
drastic approximations made to the sine and cosine functions must be
improved. An attempt was made to add the next term in the sine and cosine
series and solve iteratively but, the solution diverged. As a side note, an attempt
was also made to solve equation (1) directly by applying a simple quadrature
formula iteratively but, that also diverged. Several problems could be causing

a. the failure including a programming error but, more likely is an inappropriate
* iterative technique or quadrature formula for this type of equation. More work is
a.. still necessary along the several lines still available.
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